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Effect of the electron gas polarizability on the specific heat of phonons in Coulomb crystals

D. A. Baiko
A. F. Ioffe Physical–Technical Institute, 194021 St. Petersburg, Russia

~Received 1 September 2001; revised manuscript received 4 September 2002; published 15 November 2002!

The effect of the background polarizability on the thermodynamic properties of a Coulomb crystal of ions is
studied. The response of electrons is treated using the Thomas-Fermi~TF! and random phase approximations
~RPA!. For the case of ions fixed at their lattice sites, the energy of bcc and fcc crystals is calculated to first
order in the screening parameter (kTFa)2 (kTF is the TF wave number anda is the ion sphere radius!. It is
shown that in the RPA there exist domains of parameters~mass densityr and charge numberZ) where energy
of fcc crystal is lower than that of bcc. The effect of ion vibrations is studied using harmonic lattice approxi-
mation. It is shown that phonon modes are nearly identical in the RPA and in the TF approximation. The latter
allows one to apply the Ewald technique to the construction of the dynamical matrix, which speeds up all
calculations considerably. The main thermodynamic quantities of phonons are calculated as functions of the
quantum parameterTp /T ~whereTp is the ion plasma temperature! and the screening parameter. The electron
polarizability leads to a moderate increase of the phonon thermodynamic quantities as compared to the case of
one-component plasma with rigid background~by ;30% atkTFa50.8). Zero-point motion of ions modifies
the aforementioned domains where fcc has lower energy than bcc for static ions. The effect is profound at small
Z but leaves the domains unaltered at largerZ. The thermal vibrations of ions atT*Tp eliminate completely
the domains where fcc is thermodynamically preferable atT50. The related model of Yukawa-Wigner solid is
briefly studied. It is shown that neither bcc nor fcc crystal structures are stable in this model.

DOI: 10.1103/PhysRevE.66.056405 PACS number~s!: 52.27.Lw, 52.27.Gr
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I. INTRODUCTION

It is well known that the model of one-component plasm
~OCP! of ions is not entirely appropriate for the descriptio
of matter in the deep, fully ionized layers of white dwa
cores or neutron star crusts. In fact, the electron gas, form
the background that compensates the electric charge of
possesses finite polarizability and therefore screens
Coulomb potential of ions. Obviously, this modifies vario
properties of the system as compared to the case of OC

The effect of the electron gas polarizability has been st
ied in a number of works for solid and liquid plasma of io
within the framework of the linear response formalism~e.g.,
Refs.@1–4#, and references therein!. The linear response for
malism assumes that the screening parameterkTFa,1,
where kTF is the Thomas-Fermi~TF! wave number~to be
defined later!, while a5(3/4pn)1/3 is the ion sphere radiu
(n is the number density of ions!. Generally, the response o
electrons is described by the dielectric function evalua
using the random phase approximation~RPA!.

In parallel to the above work, a series of papers has
peared~e.g., Ref.@5#, and references therein! devoted to the
study of the so-called Yukawa-Wigner Solid~YWS!. The
YWS is a crystal of point charges immersed into the co
pensating charged background distributed
(k2/4p)e2kuR2r u/uR2r u around each lattice pointR, k be-
ing the inverse screening length. The normalization coe
cient is chosen in such a way that the overall charge of
background associated with given point charge compens
fully the point charge. The results reported in Ref.@5# are
valid for an arbitrary value of the screening parameterka.
The same distribution of background charges occurs if
takes the OCP as the undisturbed system~system of ‘‘exter-
nal’’ charges! and setse(q)511k2/q2, wheree(q) is the
1063-651X/2002/66~5!/056405~10!/$20.00 66 0564
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longitudinal dielectric function at energy transferv50, and
q is the momentum transfer. The RPA static longitudinal
electric function behaves as 11kTF

2 /q2 at smallq.
The aim of the present paper is to give some new res

on the YWS, to make a connection between the two
proaches to the treatment of the screening, to check the
tent to which the results on the YWS are appropriate
matter in the interior layers of the degenerate stars, an
present new calculations of thermodynamic properties~en-
ergy, specific heat, etc.! of Coulomb crystals with the polar
izable electron background in the linear response framew

II. STATIC LATTICE ENERGY

Consider Coulomb plasma of ions with charge numbeZ
and polarizable background of nearly free degenerate e
trons compensating the total charge. In the linear respo
formalism, the energy per ion,E, for a system ofN ions fixed
at some spatial pointsX in a volumeV at temperatureT
50 reads~e.g., Ref.@2#!

E5E01U, ~1!

U~$X%!

Z2e2
5

1

2NV (
XÞX8

(
qÞ0

4p

q2e~q!
eiq(X2X8)

1
1

2V (
qÞ0

4p

q2 F 1

e~q!
21G , ~2!

whereE0 is the kinetic energy of the ideal degenerate el
tron gas andU($X%) is the correction due to Coulomb inte
action. The thermodynamic limitN→` is implicitly as-
sumed for all intensive quantities. If ions form a lattice, a
©2002 The American Physical Society05-1
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are fixed at their lattice sitesX5R ~the static lattice case!,
Eq. ~2! can be considerably simplified:

U

Z2e2
[

U~$R%!

Z2e2

5
1

2
( 8
R

E dq

~2p!3

4peiq•R

q2e~q!

1
1

2
E dq

~2p!3

4p

q2
F 1

e~q!
21G

2
n

2
E drE dq

~2p!3

4peiq•r

q2e~q!
. ~3!

Here, the sum goes over all lattice vectorsR, excluding the
R50. U includes the electrostatic~Madelung! energy of the
OCP@which corresponds toe(q)[1] and the first-order cor-
rection due to electron polarization. Formally, sincee(q) is
in the denominator, we have all powers of the quan
e(q)21, but only the lowest-order term is described c
rectly @Eq. ~2! itself is valid only within the linear formalism
framework#. Notice that we neglect exchange and correlat
energy of electrons. However, as explained in the end of
section, Eq.~3! includes change of electron kinetic ener
due to Coulomb interactions with ions.

To begin with, consider the TF form of the dielectric fun
tion which is a useful approximation in various problems a
which describes also the screening in the YWS. In this c
we have

eTF~q!511
kTF

2

q2
, kTF52kFA e2

p\vF
, ~4!

wherekF and vF are the Fermi momentum and velocity
electrons. In this approximation, one can apply the Ew
technique to the lattice sum in Eq.~3!, with the result

UTF

Z2e2
5( 8

R

1

4R
~E11E2!1(

G

2pn

G21kTF
2

e2A(G21kTF
2 )

2
2pn

kTF
2

2
e2AkTF

2

2ApA
2

kTF

2
erf~kTFAA!. ~5!

In this case,G is a reciprocal lattice vector, whileA is an
arbitrary constant chosen to optimize both~direct and recip-
rocal! lattice sums;

E65e6kTFRerfcS R

2AA
6kTFAAD , ~6!

and erfc(x)512(2/Ap)*0
xdte2t2 for any realx. From Eq.

~5! we recover the well-known expression for the Madelu
energy in the limitkTF50:
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UM

Z2e2
5

1

2
( 8
R

1

R
erfcS R

2AA
D 1( 8

G

2pn

G2
e2AG2

2
1

2ApA

22pnA. ~7!

Let us remind the values ofz5UM /(Z2e2/a) for body-
centered-cubic~bcc! and face-centered-cubic~fcc! crystals:

zbcc520.895 929 255 682,

z fcc520.895 873 615 195. ~8!

In the next order inkTF
2 , we getUTF2UM5U1TF1 . . .

with

U1TF

Z2e2
5kTF

2 H 1

4
( 8
R

FR erfcS R

2AA
D 22AA

p
e2R2/4AG

1pnA22
1

2
AA

p
22pn( 8

G

e2AG2

G2 S A1
1

G2D J .

~9!

Writing U1TF5h(kTFa)2Z2e2/a, we have

hbcc520.103 732 333 707,

h fcc520.103 795 687 531. ~10!

These numbers are in good agreement with the corresp
ing coefficienth liq520.1032~e.g., Ref.@2#! in the expan-
sion of the energy of the strongly coupled Coulomb liqu
the latter is obtained by numerical integration using accur
liquid structure factor in the TF model.

The correction to the Madelung energy for an arbitra
dielectric functione(q) reads

U1

Z2e2
5

1

2 (
R

E dq

~2p!3

4peiq•R

q2 F 1

e~q!
21G

2
1

2E drE dq

~2p!3

4p eiq•r

q2 F 1

e~q!
21G

5( 8
G

2pn

G2 F 1

e~G!
21G'2( 8

G

2pn

G2
@e~G!21#.

~11!

In this case,

h52
3

2 ( 8
G

e~G!21

~Ga!2~kTFa!2
. ~12!

According to Jancovici@6#, the RPA dielectric function of
the relativisitc electron gas atT50 is
5-2
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q2@e~q!21#

~kTFa!2
5

2

3
2

2

3

xy2

E
ln~x1E!

1
x21123x2y2

6yx2
lnU11y

12yU
1

~2x2y221!

6yx2

A11x2y2

E
lnUyE1A11x2y2

yE2A11x2y2U ,
~13!

wherex5\kF /mc is the electron relativity parameter dete
mined by the electron number density~or plasma mass den
sity!, E5A11x2, y5q/2kF , and m is the electron mass
Note that the singularity aty51 is actually absent since bot
the second and the third logarithms are singular and ca
out. Direct summation in Eq.~12! gives the values ofh as a
function of x shown in Fig. 1 for ten values ofkTFa distrib-
uted uniformly in the logarithmic scale between 0.1 and 0
At larger kTFa, the linear response approach fails. At larg
x, h becomes constant since the screening in the ultrarela
istic electron gas is determined by the only parameter, the
charge numberZ. The latter can be expressed throughkTFa
andx via electroneutrality condition as

Z5
4

9p

~kTFa!3

8 S p\cx

e2E
D 3/2

. ~14!

ThereforeZ is independent ofx at largex ~sinceE}x) and
fixed kTFa. We note that due to a complex structure of E
~13!, h is no longer a constant as in Eq.~10!. Comparing Fig.
1 with Eq.~10! one concludes that the TF model at this sta
is rather poor and largely overestimates the effect of the e
tron screening.

FIG. 1. Quantityh, Eq. ~12!, for bcc lattice as a function ofx
for ten values ofkTFa, indicated near the curves.
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It is interesting to compare the static energy of two l
tices, bcc and fcc, calculated to first order in (kTFa)2, UM
1U1. In the rigid electron background, bcc is known to
more tightly bound than fcc:UM,bcc,UM,fcc , cf. Eq.~8!. The
same holds true if we use the weak-screening expansio
the TF model, Eq.~9!, unlesskTFa'1 ~dash-dotted curve in
Fig. 2!. Formally, fcc has lower energy than bcc at larg
kTFa where the linear response formalism becomes inva
The full TF model, Eq.~5!, also predicts the structural tran
sition from bcc to fcc atkTFa'1 ~solid line in Fig. 2!.

Our calculations show that in the case of realistic R
screening@Eqs.~11! and ~13!#, the situation is more sophis
ticated. For mildly relativistic electron gas (x;1), the re-
gions appear in thex-kTFa plane where the energy of fcc i
lower. In Fig. 3, these regions are encircled by the solid lin
calculated using the above RPA formalism. The dashed li
show the same contours but are obtained including the
fects of zero point ion vibrations as explained in Sec.
Dots show lines of fixed charge numbersZ, varying from 1
to 26. Therefore if we compress matter with given chemi
composition~givenZ) moving along a dotted line from righ
to left, we can encounter the structural transition. It is
markable that the transitions occur for selected groups oZ
~1; 3, 4; 6, 7; 11–15; 24–26!, and do not occur for otherZ.

Figures 4 and 5 elucidate the appearance of struct
transitions showing oscillations of the difference (UM
1U1)fcc2(UM1U1)bcc ~dash-dotted line! as a function ofx
for kTFa50.504 and 0.8. The dense dotted lines display
difference of Madelung energies, which is always positive
is important that the absolute value of the energy differe
in polarizable electron background can be significantly lar
than in the rigid backround OCP.

Let us turn to the energy of YWS. Thepotential energy
per ionUp for a charge distribution described by a dielect
function e(q) can be calculated exactly as

FIG. 2. Energy difference~in units of Z2e2/a) between fcc and
bcc lattices versuskTFa; DUTF ~solid line!, D(UM1U1TF) ~dash-
dotted line!, and potential energy difference for YWS~dots!.
5-3
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FIG. 3. Contours in the density-compressibility (x–kTFa) plane
encircling the domains where fcc lattice has lower energy than
at T50. Solid lines represent static lattice energy and the das
lines represent the effect of zero-point ion motion~for ion mass
numbersA52Z). Dots show lines of fixed charge numberZ from
Z51 to Z526 ~from left to right!.

FIG. 4. Difference in energy~in units ofZ2e2/a) of fcc and bcc
lattices versus the density parameterx at kTFa50.504 andT50.
Dense dots show the difference of Madelung energies. Dash-d
line is the difference of the linear response RPA energiesUM1U1

for static ions. Spaced dots show difference of zero-point ener
(Z being uniquely determined byx andkTFa, A52Z). Solid line is
the total energy difference including zero-point vibrations. Comp
ing the solid and dash-dotted lines one sees how the zero-p
vibrations eliminate two of the three domains where fcc is energ
cally preferable for static-lattice ions.
05640
Up

Z2e2
5

1

2 ( 8
R

E dq

~2p!3

4peiq•R

q2e2~q!

2
1

2E dq

~2p!3

4p

q2 F12
1

e2~q!
G . ~15!

For e5eTF , Eq. ~4!, which is the case of YWS, one ca
again use the Ewald transformation with the result

UpYWS

Z2e2
5( 8

R
F 1

4R
~E11E2!1

kTF

8
~E12E2!G

12pn(
G

e2A(G21kTF
2 )

~G21kTF
2 !2

@G22AkTF
2 ~G21kTF

2 !#

2
e2AkTF

2

2ApA
2

3kTF

4
erf~kTFAA!. ~16!

This formula reproduces Eq.~7! in the limit kTF→0. Also
the energy differenceDUpYWS between bcc and fcc lattice
indicates two lattice-type transitions: from bcc to fcc a
from fcc to bcc atkTFa'1 andkTFa'3, respectively~Fig.
2!. The dependenceDUpYWS(kTFa) closely resembles tha
obtained by Hall@5#.

c
d

ed

es

r-
int
i-

FIG. 5. Difference in free energy~in units of Z2e2/a) for
kTFa50.8. Short-dashed and dash-dot-spaced lines correspon
T5Tp , the ion plasma temperature, in the approximation of cl
sical ions~Sec. IV!. Other curves show the same quantities as
Fig. 4 (T50). Short dashes show the difference of fcc and b
crystal entropies divided by the ion coupling parameterG. Dash-
dot-spaced line is the difference of free energies of classical fcc
bcc crystals. Zero-point vibrations do not alter significantly the d
mains obtained for static-lattice ions~cf. solid and dash-dotted
lines!. However, heating the crystal to classical temperaturesT
*Tp) completely eliminates the lattice-type transitions and ma
bcc lattice thermodynamically preferable at allx. The vertical line
approximately corresponds to melting of classical OCP.
5-4
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EFFECT OF THE ELECTRON GAS POLARIZABILITY . . . PHYSICAL REVIEW E66, 056405 ~2002!
On the other hand, Eq.~15! possesses one importa
drawback that precludes its use for a real system. It does
include the change in the electron kinetic energy caused
the Coulomb interaction with ions. For this reason if w
expand Eq.~16! in terms of (kTFa)2, the first-order term will
be 2U1TF. By contrast, the linear response formula, Eq.~3!,
includes the change of the electron kinetic energy, wh
appears to be21/2 of the change in the electrostatic ener
for terms of order (kTFa)2.

III. DYNAMICAL MATRIX

Equation~2! gives the energy of the Coulomb system w
polarizable background for arbitrary fixed positions of ion
which are not necessarily lattice sites. In the crystal pha
we can take into account the ion motion near lattice site
the harmonic lattice model. For this purpose, we expand
~2! in powers of ion displacements from the lattice positio
R and restrict ourselves to the second-order term. This t
is a bilinear form with respect to ion displacements. T
05640
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y

h
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e,
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e

matrix of this form is the so-called dynamical matrix. Ge
erally, the dynamical matrix can be written in momentu
space as@1#

Dab~q!5
Z2e2

M

]2

]Xa]Xb
F( 8

R
E dk

~2p!3

4p

k2e~k!

3eik•(R2X)~12e2 iq•R!G
X50

5vp
2(

G
F ~Ga1qa!~Gb1qb!

~G1q!2e~G1q!
2

GaGb

G2e~G!
G .

~17!

In the case of TF screening, one can use the Ewald trans
mation to derive a formula that speeds up considerably
calculation of the dynamical matrix as compared to dir
summation in Eq.~17!:
s in the
o
t
s appear
e
g the

. In the
DTF
ab~q!

M

Z2e2
54pn(

G
H ~Ga1qa!~Gb1qb!

~G1q!21kTF
2

e2A[(G1q)21kTF
2 ]2

GaGb

G21kTF
2

e2A(G21kTF
2 )J

1
1

2 ( 8
R

@12cos~q•R!#H F ~kTFR21!E12~kTFR11!E22
2R

ApA
e2AkTF

2
2R2/4AG

3S dab

R3
2

3RaRb

R5 D 1S kTF
2 E11kTF

2 E21
R

AApA
e2AkTF

2
2R2/4AD RaRb

R3 J . ~18!

In the limit kTF→0, this equation reproduces the well-known expression for the dynamical matrix of the OCP:

DOCP
ab ~q!

M

Z2e2
54pnF(

G

~Ga1qa!~Gb1qb!

~G1q!2
e2A(G1q)2

2( 8
G

GaGb

G2
e2AG2G

2( 8
R

@12cos~q•R!#H FerfcS R

2AA
D 1

R

ApA
e2R2/4AG S dab

R3
2

3RaRb

R5 D 2
e2R2/4A

AApA

RaRb

2R2 J . ~19!

Using the dynamical matrix, one can solve the secular equation and find the frequencies of the phonon mode
Coulomb crystal with polarizable background. For the case of TF screening, Eq.~18! provides a very convenient way t
calculate the dynamical matrix. In the general case, one has to separateDOCP from Eq. ~17!, and then perform direc
summation over the reciprocal lattice vectors, which is very time consuming. However, surprisingly, the phonon mode
to be virtually the same in the cases of TF and RPA screening for all wave vectorsq. This is illustrated in Figs. 6 and 7. Th
lines are drawn using the TF dynamical matrix~18!. The various symbols show the phonon frequencies calculated usin
dynamical matrix~17! with the full RPA dielectric function for three values of electron relativity parameterx50.1,1, and 10.
The agreement is very good.

Let us turn to the case of YWS. Taking the energy as a function of ion coordinates as in Eq.~15!, we can again calculate
the second derivative and obtain the Hamiltonian describing the ion motion in the harmonic lattice approximation
general case,

Dab~q!5
Z2e2

M

]2

]Xa]Xb
F( 8

R
E dk

~2p!3

4p

k2e2~k!
eik•(R2X)~12e2 iq•R!G

X50

5vp
2(

G
F ~Ga1qa!~Gb1qb!

~G1q!2e2~G1q!
2

GaGb

G2e2~G!
G . ~20!
5-5
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Furthermore, adopting the TF dielectric function, we can apply the Ewald procedure to the dynamical matrix w
following result:

DYWS
ab ~q!

M

Z2e2
54pn(

G
H ~Ga1qa!~Gb1qb!

~G1q!21kTF
2

e2A[(G1q)21kTF
2 ]

3F12AkTF
2 2

kTF
2

~G1q!21kTF
2 G2

GaGb

G21kTF
2

e2A(G21kTF
2 )F12AkTF

2 2
kTF

2

G21kTF
2 G J

1
1

2 ( 8
R

@12cos~q•R!#H F ~kTFR21!E12~kTFR11!E22
2R

ApA
e2AkTF

2
2R2/4AG

3S dab

R3
2

3RaRb

R5 D 1FkTF
2 E11kTF

2 E21
R

AApA
e2AkTF

2
2R2/4AGRaRb

R3

1
kTF

2

2 F S dab

R
2

3RaRb

R3 D ~E11E2!2
2

ApA

RaRb

R2
e2AkTF

2
2R2/4A1

kTFR
aRb

R2
~E12E2!G J . ~21!
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In the limit kTF→0, the matrixDYWS reproducesDOCP.
If we expandDYWS in powers of (kTFa)2, the term propor-
tional to (kTFa)2 will be twice the corresponding term in th
expansion ofDTF . This coefficient has the same origin as t
factor 2 in the linear term of the expansion ofUYWS. How-
ever, the matrixDYWS, Eq. ~21!, unlike D and DTF , Eqs.
~17! and ~18!, is not positively definite for whatever sma
values ofkTFa for both bcc and fcc. This indicates that th
phonon modes have imaginary frequencies. Accordingly,

FIG. 6. Eigenfrequencies in a Coulomb crystal with polariza
background (kTFa50.1 and 1!, calculated using the TF model fo
the dynamical matrix~lines! and the dynamical matrix with the RPA
dielectric function~symbols! at x50.1, 1, and 10. The wave vecto
direction in the fcc lattice~which is reciprocal to bcc! is ^111&.
Because of the high symmetry of this direction, two low-frequen
modes have the same dispersion at both values ofkTFa.
05640
e

bcc and fcc lattice structures of the YWS are unstable,
the question which of them has lower static energy is pur
of academic interest.

This point is illustrated in Fig. 8. Shown is the absolu
value of the trace of the dynamical matrix of YWS~solid
lines! and the trace ofDTF ~dotted lines!. Let us remind that
the trace gives the sum of squared eigenfrequencies o
phonon branches. From up to down the lines correspon
decreasing length of the wave vectorq. The length in units
of A3/a is indicated forDYWS and is the same forDTF . The
direction ofq in the reciprocal lattice iŝ111& ~as in Fig. 6!.
The sharp dips of the solid curves indicate the points wh
the trace of the dynamical matrix changes sign. One can

y FIG. 7. Same as in Fig. 6, but the direction of the phonon wa
vector does not correspond to any symmetry axis of fcc.
5-6
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EFFECT OF THE ELECTRON GAS POLARIZABILITY . . . PHYSICAL REVIEW E66, 056405 ~2002!
that with kTF→0, the wavevector at which the instabilit
occurs tends to the center of the Brillouin zone~BZ!.

IV. SPECIFIC HEAT

After diagonalization of the dynamical matrix and qua
tization of the ion motion, we can describe the states of
ion system by numbers of phonons with a certain wave v
tor q and polarization indexs. In the harmonic approxima
tion, the phonons do not interact and we deal with the th
modynamics of ideal Bose gas of phonons.

All the thermodynamic quantities~per ion! are expressed
as derivatives of the thermodynamic potential. The latter
be written as a sum~actually an integral! over the phonon
wave vectorsq lying in the first Brillouin zone:

Vph52T(
qs

ln~12e2\vqs /T!. ~22!

For instance, the energy and specific heat are given by

Eph5V2TS ]V

]T D
m,V

5(
qs

\vqs

e\vqs /T21
,

Cph52TS ]2V

]T2 D
m,V

5
1

4T2 (
qs

\2vqs
2

sinh2~\vqs/2T!
. ~23!

The integration over the Brillouin zone can be done by
method outlined in Ref.@7#. The ratios of the calculated
quantities to their values in OCP~according to Refs.@1,8#!
are shown in Figs. 9–11 as functions ofTp /T ~whereTp is
the ion plasma temperature! for the same values of th
screening parameter as in Fig. 1. Generally, the modifica

FIG. 8. Absolute values of the trace of dynamic matrixDYWS

~solid lines! and the trace ofDTF ~dashed lines! in units of vp
2 for

wave vector lengths indicated near the solid curves in units
A3/a. Dips correspond to sign reversal of tr(DYWS).
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of the phonon thermodynamic properties due to electron
larizability is seen to be quite moderate (&30%).

Figure 12 shows various contributions to the total spec
heat of carbon plasma at densityr5106 g cm23 (x
50.801,kTFa50.425) as a function of the Coulomb cou
pling parameterG5Z2e2/aT. These conditions are typica
for the cores of white dwarfs and envelopes of neutron st
The dashed curve is the specific heat of degenerate elect
the curves marked ‘‘i ’’ show the phonon specific heat fo
OCP ~dots! and for crystal with polarizable backgroun
~solid line!. The curves marked ‘‘e1 i ’’ show the total spe-
cific heat. The correction due to the polarizable backgrou

f

FIG. 9. The ratio of the phonon thermodynamic potential per
to its value in OCP versusTp /T for several values of the screenin
parameterkTFa. The rangesTp /T@1 andTp /T,1 correspond to
the quantum and classical crystals.

FIG. 10. Same as in Fig. 9 but for phonon thermal energy.
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D. A. BAIKO PHYSICAL REVIEW E 66, 056405 ~2002!
is seen to be positive and is very small. It is clear th
phonons give the dominant contribution to the specific h
in the broad range of physical parameters.

Actually, the phonon energyEph ~and the thermodynamic
potential! must be complemented by the termE0ph
51.5\vpu1, responsible for zero-point ion vibrations, whe
uk is thekth moment of the phonon spectrum:

uk5^~vqs /vp!k&ph,

^ f ~vqs!&ph[
1

3N (
qs

f ~vqs!5
1

3~2p!3n
(

s
E

BZ
dqf ~vqs!.

~24!

FIG. 11. Same as in Figs. 9 and 10 but for phonon specific h

FIG. 12. Various contributions to the specific heat of carb
plasma atr5106 g cm23 as a function of the Coulomb couplin
parameterG.
05640
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We have calculated several principal momentsuk in the
polarizable electron background. It is convenient to int
duce the ratiosuk /ukOCP. We have also calculated the ratio
of u1,fcc2u1,bcc and ^ ln(v/vp)&ph,fcc2^ ln(v/vp)&ph,bcc to the
values of these quantities in OCP. These ratios are show
Fig. 13. The momentsu22 andu21 determine the classica
and quantum asymptotes of the ensemble average rms
displacements from the lattice positions;u251 for OCP
~Kohn sum rule!, but deviates from this value in the polariz
able background;̂ln(v/vp)&ph is important for classical as
ymptote of the crystal entropy. The differences betweenu1’s
and^ ln(v/vp)&ph’s for fcc and bcc are important for compa
ing the free energies of these lattices in the quantum
classical regimes, respectively~see below!.

With high precision~maximum error,0.05% for kTFa
<0.8), all these ratios can be fitted as

11p1~kTFa!21p2~kTFa!41p3~kTFa!6. ~25!

The OCP values and fit parameters are given in Table I.
Let us note that the solid contours in Fig. 3 and the da

dotted lines in Figs. 4 and 5 were calculated by neglect
displacements of ions from their lattice sites. Actually, t
ions are smeared around their positions in the static lat
due to thermal and zero-point vibrations. The vibrations
different for bcc and fcc, which affect the position of stru
tural transitions~contours in Fig. 3! between these lattices. I
the quantumT50 limit, the transitions are determined b
zeros of the energy difference. To include the ion vibratio
in this case, we have added the difference in zero-point
ergy 1.5\vpDu1 to the differenceD(UM1U1). The zero-
point energy difference is shown in Figs. 4 and 5 by spa
dots, assuming the ion mass numberA52Z, while Z is de-
termined uniquely bykTFa andx. The total zero-temperatur
energy difference is shown by solid line. It is seen that

t.
FIG. 13. Ratios ofu22 , u21 , u1

21, u2
21, ^ ln(v/vp)&ph for the bcc

lattice, and ofu1,fcc2u1,bcc and ^ ln(v/vp)&ph,fcc2^ ln(v/vp)&ph,bcc to
the values of these quantities for OCP versus the screening pa
eter.
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TABLE I. Moments for zero screening and values of the fitting parameters.

kTFa50 p1 p2 p3

u22 12.973 0.2789217 0.03209666 0
u21 2.7986 0.1548433 0.001007932 0
1/u1 1/0.5113875 0.2290487 -0.06287747 0.0411336
1/u2 3 0.5406582 -0.1802477 0.1639836
^ ln(v/vp)&ph 20.831298 0.2236195 20.03940911 0.01198610
Du1 0.0018065 0.1325671 20.05446109 0.02705265
D^ ln(v/vp)&ph 0.01339 0.2503483 20.02134253 0.01733280
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and
kTFa50.504, the zero-point energy difference elimina
two of the three domains where fcc is preferable for sta
lattice. By contrast, atkTFa50.8, the zero-point energy dif
ference leads only to minor shifts of the structural transit
positions. In Fig. 3, the positions of the structural transitio
with account of zero-point energy are shown by dashes.
domains shrink a little at highZ, while at lowZ the domains
change significantly, indicating the importance of zero-po
vibrations for lighter ions.

In the classical limitT.Tp , the structural transition is
determined by the zeros of the free energyF5E2TS, where
S is the entropy. IfT!TF , whereTF is the Fermi tempera
ture of electrons, then the static lattice part ofE is the same
as atT50. The phonon energy in the classical limit is ide
tical for both lattices being equal to 3T; the zero-point terms
cancel out. The difference in classical entropy rea
23D^ ln(v/vp)&ph. Thus the position of the structural trans
tions is determined by zeros of D@UM1U1
13T^ ln(v/vp)&ph#/TG. The differences in2DS/G and in
DF/TG between fcc and bcc are shown in Fig. 5 by sh
dashes and dash-dot-spaced line, respectively. The tem
ture is set equal toTp and the classical limit ofS is assumed.
The vertical line, G5181, represents approximately th
phase transition from liquid to solid in the classical OCP. W
see that heating matter toT*Tp completely eliminates the
domains where fcc is thermodynamically preferable
T50.

Our conclusion about the smallness of the polarizat
corrections to various phonon thermodynamic quantities
Coulomb solid in a broad range of temperatures and dens
contradicts that obtained by Potekhin and Chabrier@4# ~cf.
Fig. 8 and Sec. 6 in Ref.@4#!. The reason for the discrepanc
can be twofold. First, the thermodynamic quantities w
evaluated in Ref.@4# using the perturbation theory, where
the results presented in this work are based on the accu
calculation of the phonon spectrum of a Coulomb solid w
compressible electron background. The authors of Ref.@4#
realized that their perturbation analysis might have been
valid in the quantum regime of low temperatures, i.
Tp /T.1, where the largest discrepancy with our results
curs. Second, the present calculations are based purely o
harmonic lattice theory, while the results of Ref.@4# by con-
struction contain some~but not all even in the lowest order!
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anharmonic terms. Although it is unexpected that the anh
monic terms~with or without polarization corrections! can
account for the dominant contribution to the thermodynam
quantities at low temperatures, this point deserves an a
tional investigation.

V. CONCLUSIONS

We have studied the properties of Coulomb solids w
realistic polarizable electron background. The TF approxim
tion for electron screening is shown to overestimate sign
cantly the correction to the static lattice energy due to ba
ground polarizability as compared to more realistic R
description of screening~Fig. 1!. Once the polarizability of
the background is taken into account, the fcc lattice appe
to be thermodynamically preferable to bcc at low tempe
tures~both for static lattice and with zero-point ion motio
included, Figs. 3 and 4! for moderately relativistic electron
x&1 at specific values of the charge number. In the class
regimeT.Tp , this effect disappears and bcc lattice is pre
erable in the entire range of physical parameters~Fig. 5!. The
ion motion in the solid phase is studied using harmonic
tice approximation. It is shown that the dispersion of phon
modes is described very accurately in the TF approxima
~Figs. 6 and 7!. The latter allows one to use the Ewa
method for calculation of the dynamical matrix, whic
speeds up considerably calculations that involve integra
over the phonon modes. Various phonon thermodyna
quantities are calculated. It is shown that electron pola
ability leads to only moderate increase of the phonon thrm
dynamic quantities~Figs. 9–11! as compared to the case o
rigid background. The related model of Yukawa–Wign
Solid is briefly analyzed. This model does not take into a
count modification of the electron kinetic energy due to el
tron gas polarizability. As a result, both bcc and fcc lattic
appear to be unstable~phonon modes acquire imaginary fre
quencies!.
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